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The dispersion energy between extended molecular chains �or equivalently infinite wires� with nonzero band
gaps is generally assumed to be expressible as a pair-wise sum of atom-atom terms which decay as R−6. Using
a model system of two parallel wires with a variable band gap, we show that this is not the case. The dispersion
interaction scales as z−5 for large interwire separations z, as expected for an insulator, but as the band gap
decreases the interaction is greatly enhanced; while at shorter �but nonoverlapping� separations it approaches a
power-law scaling given by z−2, i.e., the dispersion interaction expected between metallic wires. We demon-
strate that these effects can be understood from the increasing length scale of the plasmon modes �charge
fluctuations�, and their increasing contribution to the molecular dipole polarizability and the dispersion inter-
action, as the band gaps are reduced. This result calls into question methods which invoke locality assumptions
in deriving dispersion interactions between extended small-gap systems.
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I. INTRODUCTION

Conventionally, the dispersion interaction between two
systems is formulated in terms of correlated fluctuations de-
scribed by local �frequency-dependent� polarizabilities which
gives rise to the familiar atom-atom −C6

abRab
−6 interaction at

leading order.1 This form of the interaction has been used
with a good measure of success in studies of many systems,
from gases to solids, including complexes of biological mol-
ecules and organic molecules. These are typically insulators;
that is, they have large highest occupied molecular orbital-
lowest unoccupied molecular orbital �HOMO-LUMO� gaps.

It has been known for a very long time that the additive
atom-atom form of the dispersion does not hold very well for
metallic systems. The classic case of an atom interacting
with a thin metallic surface shows deviations from the addi-
tive law: the correct treatment of the metal results in a R−3

power law,2 but summing over atom-atom terms leads to a
R−4 interaction. More recently, strong deviations from addi-
tivity have been demonstrated in the interactions of extended
systems of metals or zero band-gap materials with at least
one nanoscale dimension.3–7

The semiclassical picture is useful for understanding the
source of the differences in the metallic and insulating cases.
In an insulator, electronic perturbations decay exponentially
with distance. We can therefore treat electron correlations as
being local. At lowest order, these local fluctuations give rise
to instantaneous local dipoles, and the correlation between
these local dipoles gives rise to the atom-atom R−6 interac-
tion. However, in a zero band-gap material, electronic fluc-
tuations are long ranged, particularly if one or two of the
dimensions are nanoscale.3 It is these long-ranged fluctua-
tions that give rise to the nonadditivity of the dispersion and
deviations from the atom-atom R−6 interaction.

While the insulating and metallic cases are now well un-
derstood, little is known of the intermediate, semiconducting
case. The nature of the dispersion interaction between ex-
tended molecules with finite but small HOMO-LUMO gaps

less than about 0.2 a.u. �5 eV� remains an open question. A
large number of important nanomolecules fall into this cat-
egory, such as carbon nanotubes and the “lander”-type mol-
ecules that are used as organic conductors. The electronic
structure of materials made of these molecules depends
strongly on structures they assume in the bulk, often via
self-assembly. Consequently it is very important to under-
stand exactly how these molecules interact. The dispersion
interaction is the dominant source of attraction between these
�-conjugated systems. For want of a clearer understanding,
many studies assume the usual insulating case for the atom-
atom R−6 form of this interaction. As we shall show in this
paper, this is both qualitatively and quantitatively incorrect
for semiconducting molecules.

A word of clarification: we use the term “nonadditive”
here to describe deviations from the additive atom-atom pic-
ture of the dispersion interaction between two molecules. It
is also commonly used to refer to the deviation from pair
additivity seen in the interactions of three or more distinct
molecules, but we are not concerned with such effects here,
except for a brief comment in the discussion.

II. INTERACTING WIRES USING HÜCKEL
(TIGHT-BINDING) THEORY

The dispersion energy appears at second order in intermo-
lecular perturbation theory and is formally expressed in
terms of the exact eigenstates and eigenenergies of the non-
interacting systems.1 In a mean-field theory the dispersion
energy between two subsystems �A and B� can be expressed
as a sum over the single-electron wave functions localized to
each subsystem

Edisp
�2� = �

i�A,j�B
�

a�A,b�B

��ij�r12
−1�ab��2

�i + � j − �a − �b
, �1�

where i , j �a ,b� are occupied �virtual� single-particle wave
functions in either subsystem A or B and �i is the eigenvalue
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of the ith wave function. Assuming two parallel wires,
aligned parallel to the x axis and separated by a distance z,
the integral which appears above has the form

�ij�r12
−1�ab� =� �i

��x1�� j
��x2��a�x1��b�x2�
�x12x̂ + zẑ�

dx1dx2 �2�

and is the Coulomb interaction between the charge density
�i

��a due to excitation i→a in subsystem A with � j
��b in B.

In periodic systems, the wave function can be expressed
in Bloch form, i.e., � j�x�=eikjxuj�x�, and so the codensity
�i

��x��a�x�=ei�ka−ki�xui
��x�ua�x� can have a long-wavelength

modulation, whose electrostatic field will not be well de-
scribed by a multipole expansion at separations comparable
to this length scale. Furthermore, in small-gap systems, these
excitations have plasmon character and contribute signifi-
cantly to Edisp

�2� , as we discuss below.
Hückel �tight-binding� theory gives us a convenient for-

malism for evaluating the above expression for interactions
between two one-dimensional wires. We considered a two-
band model Hamiltonian of the form

H = �
i

n

��a2i
† a2i−1 + ��a2i+1

† a2i + H.c.� , �3�

where � ,�� are alternating bond strengths between adjacent
sites, as would be encountered in a chain of �H2�n or a
�-conjugated polyene. We computed the interactions be-
tween two such parallel wires, each consisting of 2n identical
atoms, equally spaced at intervals of d, such that the unit cell
is of length 2d and contains two atoms. Assuming periodic
boundary conditions over a crystal cell of length 2dn, then
there are two bands per wave vector. The single-particle
wave functions and energies of such a system can be found
analytically. The band structure is given by

��k� = � ��eikd + ��e−ikd� �4�

and the set of wave vectors by

k =
�j

nd
; j = −

n

2
+ 1,−

n

2
+ 2, . . . ,

n

2
. �5�

�=�� corresponds to a uniform wire with energy eigenval-
ues given by ��k�= �2��cos�kd��, which in the limit of large
n has a vanishing band gap at half filling �i.e., is a metal�.
The opposite limit ���=0� corresponds to a chain of isolated
dimers with energy eigenvalues ��k�= ��, independent of
wave vector, and corresponds to the perfect insulator. By
varying the ratio �� /� between 0 and 1, we can very conve-
niently probe the dispersion interaction in the intermediate
�semiconducting� regime with the band gap given by �Eg
=2��−���. The required integrals can be evaluated8 as

�ij�r12
−1�ab� =

1

nd
�
G

K0�Gz�Yia�G�Y jb�ki + kj − ka − kb − G� ,

�6�

where �G	 are reciprocal lattice vectors of the primitive unit
cell and Yia�G� is the �analytic� Fourier transform of ui

�ua
obtained by assuming highly localized basis functions on

each atom. K0 is the zeroth-order-modified Bessel function
of the second kind and is the Fourier transform of the poten-
tial generated by a one-dimensional lattice at a field point at
z from the lattice.9–11 K0 decays exponentially with increas-
ingly large arguments and so typically only the ten smallest
reciprocal lattice vectors need to be included in the summa-
tion in order to obtain converged results.

The calculations presented here use 8401 Monkhorst-Pack
k points to sample the Brillouin zone, which corresponds in
real space to wires consisting of 16 802 sites per crystal cell.
Such fine k-point sampling was required to obtained con-
verged results with respect to system size.

As shown in Fig. 1, the dispersion interaction between
two uniform wires ��� /�=1� varies as 
z−2 across the
whole range of z, in good agreement with previously ob-
tained results via random-phase approximation3 and quantum
Monte Carlo7 calculations for metallic wires. The interaction
between chains of isolated dimers ���=0� varies as z−5, as
would be expected from the conventional picture of disper-
sion interactions. In the semiconducting regime, there is no
unique exponent which characterizes the dispersion interac-
tion over all z. However, at small separations z, it tends to the
metallic behavior �z−2� whereas large z it tends to insulating
behavior z−5.

III. INTERACTING H2 CHAINS USING SAPT(DFT)

The principal drawback of the Hückel model is the lack of
electron correlation, and hence screening, within each sub-
system. For more realistic calculations we can use the
symmetry-adapted perturbation theory based on density-
functional theory12–14 �SAPT�DFT��, where the dispersion
energy is evaluated not via a sum over states but through a
coupled Kohn-Sham formulation based on the density-
response functions of the interacting molecules15

FIG. 1. �Color online� The second-order dispersion energy of
parallel wires modeled using Hückel theory obtained from Eq. �1�.
The bonding interaction is of alternating strength and is controlled
by the ratio �� /�. The lines are numerical power-law fits to the
small-z and large-z data points. In the metallic ��=��� and perfect
insulating ���=0� cases, a single power-law fits the whole range of
z with the expected exponents −2 and −5, respectively. The inter-
mediate cases show a crossover between these two limiting regimes
as z is varied.
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Edisp
�2� = −

1

2�
�

0

	

dw� dr1dr1�dr2dr2�



�A�r1,r1�;iw��B�r2,r2�;iw�

�r1 − r2��r1� − r2��
, �7�

where �A/B�r ,r� ;w� are the frequency-dependent density-
response functions of the molecules which describe the
propagation of a frequency-dependent perturbation in a mol-
ecule, from one point to another, within linear-response
theory. The second-order dispersion energy is exact in this
formulation if exchange effects are neglected.

We have studied the interactions between two parallel fi-
nite �H2�n �Fig. 2� chains with n=16 and 32 and distortion
parameters �=2.0, 1.5, 1.25, and 1.0, where � is the ratio of
the alternate bond lengths. The HOMO-LUMO gap of a hy-
drogen chain can be modified by simply introducing a differ-
ence in alternate bond lengths. The distortion parameter �
gives us a convenient way to control the electronic structure
of the chain and allows us to study the interactions between
insulating, semiconducting, and �near� metallic chains in one
framework.

The frequency-dependent density-response functions that
appear in Eq. �7� were evaluated with coupled Kohn-Sham
perturbation theory, using the PBE0 functional16 with a hy-
brid kernel consisting of 75% adiabatic local-density ap-
proximation and 25% coupled Hartree-Fock �HF�. The accu-
racy of this approach for the dispersion energy of small
molecules surpasses that of Møller-Plesset perturbation
theory and rivals that of coupled-cluster methods.13–15,17,18

Furthermore, there is no qualitative change in our results
when the fraction of HF exchange is increased, so the results
presented here are unlikely to be artifacts of the shortcom-
ings of coupled Kohn-Sham perturbation theory.19,20 All cal-
culations used the cc-pVDZ basis21 which will result in a
significant underestimation of the strength of the contribution
to the dispersion energy that arises from transverse polariza-
tion, but should better describe the contribution arising from
the longitudinal polarization. Since it is the longitudinal po-
larization that is most important in these systems, we expect
our results to be qualitatively correct.

Dispersion energies are displayed in Fig. 3 and the effec-
tive power laws for the physically important separations be-
tween 6 and 20 a.u. are shown in Table I together with
HOMO-LUMO gaps. For insulating chains with an additive
dispersion interaction we would expect two regimes deter-
mined by chain length L: for zL we should expect the
infinite chain result, i.e., the effective dispersion interaction
should decay as z−5, and for z�L we should recover the
usual z−6 power law. This is what we see with the chains with

the largest distortion parameter, �=2.0, which exhibit large
HOMO-LUMO gaps. As the distortion parameter � ap-
proaches unity and the HOMO-LUMO gap consequently de-
creases, the deviation from the additive insulating case be-
comes increasingly apparent, and for the longest of the
chains considered here the dispersion interaction is signifi-
cantly enhanced. For example at 40 a.u. �roughly half the
chain length� an �=1 chain has a dispersion interaction two
orders of magnitude larger than an �=2 chain. Additionally,
we see increasing finite-size effects: the power laws for the
n=16 and 32 chains, which were very similar for �=2.0, are
considerably different for �=1.0.

IV. MULTIPOLE EXPANSION

We can understand these effects in terms of the multipole
expansion. The multipole form of the dispersion energy is
usually formulated in terms of �local� atomic polarizabilities.
This leads to the usual R−6 atom-atom interaction �at leading
order� and would not account for the anomalous dispersion
power laws that we have observed in the chains. However
the complete distributed-polarizability description is nonlo-
cal: that is, it describes the change in multipole moments at
one atom in response to a change in electrostatic fields at
another.

x

y

FIG. 2. �Color online� Distorted �H2�n chains. The distortion
parameter is defined as �=y /x. In all our chains we have chosen
x=1.4487 a.u.

FIG. 3. �Color online� The second-order dispersion energy of
pairs of parallel �H2�n chains. Energies have been normalized by the
number of H2 units n. The solid lines are dispersion energies for
chains with n=32 and the dashed lines for chains with n=16 �only
�=1.0 and 2.0�.

TABLE I. Power-law behavior of Edisp
�2� fitted to the form z−x in

the region from 6 to 20 a.u. Beyond 600 a.u. all chains exhibit
dispersion energies with the z−6 power law because of their finite
length. The HOMO-LUMO gaps, �Eg, have been calculated from
the Kohn-Sham eigenvalues. Energies are in atomic units.

�

�H2�16 �H2�32

�Eg x �Eg x

2.0 0.370 4.89 0.366 4.84

1.5 0.280 4.58 0.270 4.50

1.25 0.202 4.20 0.183 4.09

1.0 0.099 3.52 0.057 3.17
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We obtain the multipole form of Eq. �7� by expanding the
Coulomb terms using the distributed form of the multipole

expansion �r−r��−1= Q̂t
aTtu

abQ̂u
b, where a and b denote

�atomic� sites and t and u are multipole indices—00 for the
charge, 10, 11c, and 11s for the components of the dipole,

and so on. Q̂t
a is the multipole moment operator for moment

t of site a and Ttu
ab are the interaction tensors that contain the

distance and angular dependence �see Ref. 1 for details�. In-
serting this expansion in Eq. �7� we obtain the multipole
form for the dispersion energy

Edisp
�2� = −

1

2�
Ttu

abTt�u�
a�b��

0

	

�tt�
aa��iw��uu�

bb��iw�dw . �8�

Here Ttu
ab is the interaction function between multipole t on

site a in subsystem A and multipole u on site b in B while

�tt�
aa� are the frequency-dependent nonlocal polarizabilities

for sites a and a� and may be expressed in terms of the
frequency-dependent density susceptibility as22

�tt�
aa���� = �

a
�

a�
Q̂t

a�r���r,r����Q̂t�
a��r��d3rd3r�. �9�

There are no assumptions made in deriving Eq. �8�, other
than that spheres enclosing the atomic charge densities on
different molecules do not overlap. We have calculated dis-
tributed polarizabilities using the constrained density-fitting
algorithm.22

Equation �8� involves a quadruple sum over sites and is
therefore computationally demanding. To reduce this cost,
we normally make a simplification by localizing the nonlocal
polarizabilities. That is, the nonlocal polarizabilities—the

�tt�
aa���� with a�a�—are transformed onto one or other site

using the multipole expansion.23,24 This transformation is
possible only if the nonlocal terms decay fast enough with
intersite distance. If not, the multipole expansion used in the
transformation diverges and the localization is no longer pos-
sible. As we shall see, this is precisely what happens in the
�H2�n chains as the distortion parameter � decreases.

An important feature of the nonlocal polarizability de-
scription is the presence of charge-flow polarizabilities—
terms with t or u=00 that describe the flow of charge in a
molecule—which are usually small and die off quickly with

distance. The lowest rank charge-flow polarizability is �00,00
aa� :

if Va is the potential at site a, the change in charge at site a

is given by �Q̂00
a =−�a��00,00

aa� �Va�−Va�. For a system with a
large HOMO-LUMO gap the charge-flow terms are expected
to be short range. The charge-flow polarizabilities of the
�H2�32 chain with �=2.0 can be empirically modeled reason-
ably well with an exponential, that is,

�00,00
aa� 
 e−��raa��, �10�

where raa� is the intersite distance and �0.5 a.u. In this
case, the charge-flow polarizabilities drop by more than an
order of magnitude within a few bonds. This is illustrated in
Fig. 4. However, as we reduce the distortion parameter � the
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FIG. 4. Matrix representation of the charge-flow polarizability matrix �00,00
aa� for �H2�32 chains with �=2,1.5,1.25, and 1 �clockwise, from

top left�. Sites a and a� are represented along the x and y axes. Because these terms span a number of orders of magnitude of both signs we

have plotted ln���00,00
aa� ��. Color scheme: Black rectangles correspond to terms of order 1 a.u. and white rectangles to terms of order 10−3 a.u.
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charge-flow polarizabilities decay more and more slowly
with site-site distance, until, at �=1.0, they span the entire
length of the chain. Even for the �=1.5 chain, these nonlocal
charge-flow polarizabilities can no longer be localized with-
out incurring a significant error, but for the chains with �
=1.25 and 1.0 localization results in a qualitatively incorrect
physical picture.

Moreover the charge-flow polarizabilities contribute to
the dipole-dipole polarizability in the direction of the chain,
and this contribution increases dramatically as the band gap
decreases. For a 64-atom H2 chain with �=2, the static di-
pole polarizability �xx=�11c,11c parallel to the chain, calcu-
lated as described above, is about 410 a.u., of which 180 a.u.
is contributed by charge flows. When �=1, so that the H
atoms are equally spaced, �xx is about 11350 a.u., larger by
about two orders of magnitude, and all of this increase is
attributable to the charge-flow effects.

We have calculated the dispersion energy using Eq. �8�
with distributed polarizabilities, including terms to rank 1.
Higher ranking terms can be included, but these are not
needed for the hydrogen chains. These results are presented
in Fig. 5 for the �H2�32 chains with �=2.0 and 1.0. First of
all, consider the insulating chain ��=2.0�: the charge-flow
polarizabilities alone severely underestimate the dispersion
energy, but when terms up to rank 1 are included the agree-
ment of Eq. �8� with the nonexpanded SAPT�DFT� value for
Edisp

�2� is excellent for all interchain separations shown in the
figure. However, at �=1, the dispersion interaction is en-

tirely dominated by the pure charge-flow �i.e., �00,00
aa� � terms,

the higher order terms involving the dipole polarizabilities
making a negligible contribution. Since the overall disper-
sion interaction is greatly enhanced as � is reduced, this
implies that these pure charge-flow terms enhance the disper-
sion interaction in this limit.

Why do the charge-flow terms result in the anomalous

power laws? The lowest rank charge-flow terms, �00,00
aa� , that

appear in Eq. �8� are associated with T functions for the
charge-charge interaction: T00,00

ab =Rab
−1, where Rab is the dis-

tance between site a on one wire and site b on the other. If
the wires are separated by distance vector R= �0,0 ,z� and xa
and xb are distance vectors for sites a and b along the chains

then Rab=R− �xa−xb�. The dispersion energy arising from
just the charge-flow terms is

Edisp
�2� �00,00� = −

1

2�
�
aa�

�
bb�

1

Rab

1

Ra�b�


 �
0

	

�00,00
aa� �iw��00,00

bb� �iw�dw . �11�

In contrast to the dipole-dipole polarizabilities, the charge-

flow polarizabilities satisfy the sum rule �a��t,00
aa��w�=0,

which is a direct consequence of the charge-conservation re-
quirement: ��A�r ,r� ;w�d3r�=0. This leads to cancellation
between the charge-flow contributions to the total dispersion
energy and to a R−6 distance dependence at long range, but
the cancellation is incomplete at short range, and terms in
R−n ,2�n�5 also occur. To see how this arises, consider the
following length scales: �1� Lc=1 /�, which is a measure of
the extent of the charge fluctuations determined by the expo-
nential decay of the charge-flow polarizabilities assumed in
Eqs. �2� and �10� L, the chain length.

z�Lc: Here the charge-flow terms dominate and contrib-
ute R−2 terms to the dispersion energy. From Fig. 4 we see
that Lc is largest for the near-metallic wire for which we see
the effects of these terms �Fig. 5� to z
60 a.u.

Lcz�L: In this region the extent of the charge fluctua-
tions is small compared with Rab and only those Ra�b� close
to Rab are important. We can therefore expand Ra�b� about
Rab using the multipole expansion. The leading term in this
expansion is

Edisp
�2� �00,00�  −

1

2�
�
ab

1

Rab

1

Rab
�

0

	 ��
a�

�00,00
aa� �iw��


��
b�

�00,00
bb� �iw��dw = 0, �12�

where we have used the charge-flow sum rule. So we see that
the R−2 contributions sum to zero in this region. However,
the higher order contributions are nonzero.

• Lz: In this limit both Rab and Ra�b� can be expanded in
a multipole expansion about R= �0,0 ,z�: Rab

−1= �R
− �xa−xb��−1= �R−xab�−1z−1− 1

2xab
2 z−3, and likewise for

Ra�b�
−1 . Once again, the leading terms vanish because of the

sum rule, leaving only the effective dipole-dipole contribu-
tion

Edisp
�2� �00,00�  −

1

2�

1

4z6�
aa�

�
bb�

xab
2 xa�b�

2


 �
0

	

�00,00
aa� �iw��00,00

bb� �iw�dw

� −
C6�00,00�

z6 . �13�

This explains the large-z charge-flow contribution to the
dispersion energy shown in Fig. 5. Notice that for the near-
metallic wires, this contribution to the total molecular C6
coefficient dominates that from the dipole-dipole polarizabil-

FIG. 5. �Color online� The second-order dispersion energy cal-
culated using the polarizabilities of �H2�32 chains with distortion
parameters �=1 and 2. The contribution from the charge-flow po-

larizabilities, �00,00
aa� , is displayed separately from the sum of contri-

butions up to the dipole-dipole polarizabilities.
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ities but for the large-gap wires the opposite is true.
In short, the charge-flow polarizabilities give rise to the

changes in power law of the dispersion energy and also con-
tribute to an enhancement of the effective C6 coefficient,
applicable at long range.

V. DISCUSSION

The physical picture which emerges from both the Hückel
approach and the ab initio calculations is the following. �1�
In systems with a finite but small gap, spontaneous charge
fluctuations �plasmon modes in the infinite case� introduce a
secondary length scale intermediate in size to the interatomic
distance and the system size. This length scale grows as the
gap gets smaller. �2� For separations z small compared with
this length scale, the dispersion energy arising from the cor-
related fluctuations has metallic character. �3� At z that are
large compared with the length scale of the fluctuations, the
dispersion can be described using London’s dipole approxi-
mation, giving z−5 behavior, but the magnitude of the fluc-
tuations now depends strongly on the band gap, leading to
orders of magnitude enhancement over the insulator case.

�4� In small-gap systems these fluctuations give rise to a
strong nonadditivity in the polarizability. For example, the
ratio of the longitudinal static polarizabilities for the near-
metallic and insulating �H2�32 chains is 28. The dispersion
energy is proportional to the square of the polarizability, that
is, 784. This is roughly the ratio of the dispersion energies
for these two cases but only at separations z much greater
than the chain length. Any attempt to extrapolate this result
to shorter distances results in a severe overestimation of the
dispersion energy.

�5� This effect is not a consequence of retardation �we use
the nonrelativistic Hamiltonian� or damping �charge-density
overlap is negligible�. It originates from the complex behav-
ior of the nonlocal charge-flow polarizabilities. These are
terms of rank zero that describe charge fluctuations in the
system and are associated with a delocalized exchange-
correlation hole.25,26 This delocalization can be quantified us-
ing the localization tensor26,27 and may give us a quantitative
method for defining the charge-fluctuation length scale, Lc.
We are currently investigating this possibility. �6� We have
demonstrated that both the change in power law with dis-
tance and the enhancement of the dispersion energy can be
understood using nonlocal polarizability models containing
charge-flow polarizabilities. �7� It should come as no surprise
that these effects are also strongly dependent on system size
�see Fig. 3�.

These results call into question theoretical methods that
impose locality so as to scale linearly with system size �such
as local coupled cluster and local MP2 methods� or that ap-
proximate the dispersion energy using a pair-wise −C6R−6

interaction, as is done with dispersion-corrected DFT meth-
ods and empirical potentials. In the former, these effects can

be included by extending the region of locality, though at the
cost of losing linearity in scaling, but the latter methods
should not be applied to systems such as these. Even DFT
functionals with a nonlocal dispersion correction, such as the
van der Waals functional of Dion et al.28 and the more recent
functional of Vydrov and Van Voorhis29 are unlikely to con-
tain the correct physics because of an implicit assumption of
locality in the polarizability. These functionals will include
many-body nonadditive effects between nonoverlapping sys-
tems but not the nonadditive effects within each system such
as those described here. On the other hand, methods based
on the random-phase approximation and quantum Monte
Carlo should be able to describe the nonadditive effects de-
scribed in this paper if finite-size effects are kept under con-
trol.

In systems containing carbon atoms, such as
�-conjugated chains, the contributions from the core elec-
trons will at least partially mask those from the more mobile
� electrons, so it is possible that the changes in power law of
the dispersion interaction will not be as dramatic as those we
see in the �H2�n chains. But we should nevertheless expect a
high degree of nonadditivity arising from the charge-flow
terms. One indicator of this nonadditivity is the nonlinear
dependence of the molecular polarizability on system size.
This has been already demonstrated above and is further sup-
ported by the experimental work of Compagnon et al.30 on
the polarizabilities of the fullerenes C70 and C60 which are
found to be in the ratio 1.33 rather than the ratio 70 /60
=1.17 that would be expected if the systems were additive.
Therefore, if reliable C6 models are to be constructed for
extended �-conjugated systems, these models will need to
absorb the effects of the nonadditivity of the charge-flow
polarizabilities. That is, they should be tailored to suit the
electronic structure of the system rather than be transferred
from calculations on smaller systems. The Williams-Stone-
Misquitta �WSM� procedure31–33 is one such method that is
capable of constructing effective local polarizability and dis-
persion models that account for the electronic structure of the
system. In fact, the nonlocal models presented in this paper
are derived in the first step of the WSM procedure. We are
currently investigating the behavior of WSM dispersion
models for a variety of carbon systems.

Finally, strongly delocalized systems will also have im-
portant contributions to the dispersion energy from terms of
third order in the interaction operator, that is, from the hy-
perpolarizabilities. We have not considered such terms in this
paper. Furthermore, in ensembles of such systems there will
be strong nonadditive effects between molecules. We are cur-
rently investigating the nature and importance of this type of
nonadditivity.
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